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Abstract

This paper examines the need for complex, adaptive
solutions to certain types of complex problems typified
by the Strategic Defense System and NASA's Space
Station and Mars Rover. Since natural systems have
evolved with capabilities ot intelligent behavior in
complex, dynamic situations, it is proposed that bio-
logical principles be identified and abstracted for
application to certain problems now facing industry,
defense, and space exploration.

Two classes of artificial neural networks are pre-
sented—a non-adaptive network used as a genetically
determined “retina,” and a frequency-coded network
as an adaptive "brain." The role of a specific envi-
ronment coupled with a system of artificial neural net-
works having simulated sensors and effectors is seen
as an ecosystem. Evolution of synthetic organisms
within this ecosystem provides a powerful optimization
methodology for creating intelligent systems able to
function successtully in any desired environment.

A ccmplex software system involving a simulation of an
environment and a program designed to cope with
ihat environment are presented. Reliance on adaptive
systems, as found in nature, is only part of the pro-
posed answer, though an essential one. The second
part of the proposed method makes use of an addi-
tional biological metaphor—that of natural selection—
to solve the dynamic optimization problems that every
intelligent system eventually faces. A third area of
concern in developing an adaptive, inteliigent system
is that ot real-time computing. It is recognized that
many of the problems now being explored in this area
have their parallels in biological organisms, and many
of the performance issues facing artificial neural net-
works may find resolution in the methodology of real-
time computing.

*Research performed at Oak Ridge National Labcra-
tory, operated by Manin Marietta Energy Systems,
inc., for the U.S. Depantment of Energy under Con-
tract No. DE-AC05-840R21400.
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Introduction

The Strategic Defense System is archetyp-
ical of a certain class of complex probiems
that are becoming increasingly important to
defense and industry as the 21st century
nears. Additional examples of such prob-
lems include optimized control of nuclear
power plant clusters, design of new and
specific molecular medicines, managing the
space station, and controlling unmanned
plenetary exploration vehicles. The com-
plexity of these and similar probiems raises
serious questions concerning the usual
methodology of hardware and software de-
sign and makes impossible demands on
current methods of reliability testing and
system verification. The present approach
in treating complex systems is to create a
simulation presumed to be representative of
the actual system in its essential details.
Studying a simulation is thought to be a
practical alternative to reality when issues of
complexity, prohibitive expense, and impos-
sibility of adequate testing are concerned.

The need for an accurately detailed
description of the physical system compo-
nents and their interactions becomes para-
mount, as the behavior of the simulation is
the basis for developing strategies to cope
with real systems. This points to what may
be a major flaw in current software simula-
tion and modeling philosophy, as any
change requires extensive reprogramming
of major parts of the entire simulation. Thus,
the predictive power of a simulation to be
used for the design of a complex system is
easily compromised.
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Incompleteness of information concerning
the real, physical systems being simulated
imposes another intolerable burden on the
simulations and support teams. In addition
to the reliance demanded from implemen-
tation hardware (sensors, communications,
effectors, and processors), we are demand-
ing that programmers perform flawlessly
under extreme stress of time constraints and
imperfect knowledge. This is clearly unac-
ceptable, as anyone who has ever at-
tempted to write, debug, and run even the
simplest program can attest.

This paper results from a search for a
methodology to attack these very real issues
of hardware and software complexity, relia-
bility, and dynamic variability; and to show
how software systems might become self-
designing, overcoming both the severe con-
straints noted above and providing the con-
fidence essential to deployment by ensuring
reliable and correct functioning in a chang-
ing environment. The ideas presented be-
low are still in their infancy, but they have
been partially tested with encouraging re-
sults. The main research effort is to deter-
mine whicn principies to abstract from na-
ture, the extent of abstraction necessary,
and the details required for creating intelli-
gent machines; for it is only through adap-
tive, intelligent systems that the limitations
noted above can be overcome.

The problems of modeling and simulation
are discussed first, and a new principle of
software engineering is proposed. The
question of whether a complex system can
be simulated is raised. Examination of is-
sues leads to a proposal for creating syn-
thetic organisms to solve certain complex
problems. Two network models are pre-
sented as a vehicle for implementing a self-
designing, compiex system. Results of the
two evolutionary programs based on these
networks are discussed, and a number of
possible extensions to the methods are
given.

Simulation & Modeling

For problems of sufficient complexity, a step-
by-step simulation is the most efficient
means of obtaining predictions of system
behavior. Wolfram' has argued that the
behavior of certain systems may be ef-
fectively found only by an explicit, step-by-
step simulation, and he considers such
systems to be "computationally irreducible.”
Wolfram's argument amounts to showing a
contradiction between the assumptions of a
universal computer for such calculations
and the existence of an algorithmic shortcut
for the simulation. Physics and engineering
are concerned primarily with the comnu-
tationally reducible, while most biological
systems are computationally irreducible.
For example, "the development of an organ-
ism from its genetic code” may well belong
to the latter class.! Wolfram goes on fo
suggest that "the only way to find out the
overall characteristics of the organism from
its genetic code may be to grow it explicitly.
This would make large-scale computer-
aided design of biological organisms, or
'biological engineering,' effectively impossi-
ble: only explicit search methods analogous
to Darwinian evolution could be used.” 1

Given the dynamic nature of a complex,
real-time control problem, the phrase "bio-
logical organism" may be replaced with
"software” and "biological engineering" with
"software engineering,” extending the range
of applicability of the previous sentence.
Wolfram's suggestion then becomes a new
principle of software engineering for truly
complex problems. It is this principle that we
wish to explore along with neural networks
and adaptive systems.

Complex Systems: Where
Simulations Fail

Why are we concerned with biology and
problems of computational irreducibility?
Artiticial neural networks are well-under-
stood computational structures firmly rooted
in the mathematics of systems of first-order



differential equations, and their proponents
claim that many pressing problems will yield
to the new paradigm of computational neu-
roscience. On the other hand, a biological
system is one that lives in and has been op-
timized for a centain dynamic ecosystem.
Such systems are complex and not well un-
derstood from the simple-system g«rspec-
tive. Evidence is accumulating from many
quarters that systems combining information
management and real-time control o* com-
plicated hardware are likewise not simple.
By the very nature of an algorithm, algorith-
mic methodologies developed to cope with
simple systems will most assurediy fail when
applied to these complex problems. Indeed,
it is already evident that expert systems
(deterministic decision trees) become brittle
wher the application domain is slightly al-
tered, as does any algorithmic structure
when used outside its range of applicability.
Note that the ad hoc addition of "fuzzy rea-
soning" by adding Bayesian logic or fuzzy
sets does not cure this problem: once the
ranges of variation are specified, the system
is still essentially deterministic. Although
simulation may well be a practical way to
study certain problems, it is too much to
hope that the limitations imposed by brittle
programs and inadequate knowledge can
be overcome by a purposefully designed
simulation.

Te go beyond simulation to a synthetic or-
ganism that solves a complex, real-time
problem in an effective manner is seen as
the next logical development in computer
science. A simple system, by definition, is
one allowing separation between states and
dynamical laws, i.e., the intrinsic nature of
the system and its response to external
effects.2 The author of this view of physical
systems, Robert Rosen, suggests that "any
system for which such a description cannot
be provided ... [is] complex. Thus, in a com-
plex system, the causal categories become
intertwined, in such a way that no dualistic
language of states plus dynamical laws can
completeiy describe it."2 Computability of

complex systems may be examined by con-
sidering the well-known Church-Turing
Thesis, which asserts, in essence, that any
material process can be simulated. That is,
the difference between actual points in a
state space of a real system and corre-
sponding calculated points in the space of
the simulated system can be made arbi-
trarily small by sufficient calculational effort.

There are iwo reasons—one practical, the
other fundamental—why any actual sim-
ulation will fail when asked to perform be-
yond strict design limits. The practical rea-
son has been discussed above as due to
imperfect knowledge of the reaiity being
simulated; the second, more fundamental
reason, is based on Rosen's discussion of
complex systems. Godel3 has shown that
the Church-Turing Thesis fails tor arithmetic.
Thus, for example, it is not possible to en-
code the whole of arithmetic into input
strings for a Turing machine in such a way
that every truth of arithmetic is provable as a
theorem. Rosen uses this fact as a point of
departure to discuss differential equations
as universal simulators.4 He then goes on
to show that "general vector fields] cannot
be described to a Turing machine, ... [and)
since they cannot be encoded, they cannot
be simulated. It is precisely here that
Church's Thesis fails in analysis. In a pre-
cise sense, most orbits of such a general
vector field are not computable.” 4

Rosen seems to be suggesting that since
algorithms (computer programs) can indeed
compute any computable function, and
since behaviors of certain complex systems
are not computabie by not possessing a
complete syntactic description, there can be
"no independent, inherent distinction be-
tween hardware and software"4 as the Tur-
ing machine demands. Simulations can at
best repeat what "organisms have already
done; not the things they will do."4 A real,
parallel, asynchronous neural network
model is therefore necessary to emulate
non-computable functions—the orbits of the




general vector field. Thus, we must pro-
gress from the neural network simulations ot
today to actual neural network systems ot
sufficient generality and power to mirror real
neural activity at some level of abstraction
such that they become actual synthetic
organisms that learn to cope with the
problems we need to solve. Only then will
we have achieved our goal of creating ma-
chines with enough intelligence (or any in-
telligence at ail, for that matter) to cope ade-
quately with the types of problems consid-
ered here.

A Synthetic Intelligent System

To create a system exhibiting the ability to
deal successfully with a complex and
changing environment, a biological meta-
phor of an ecosystem inhabited by po-
tentially intelligent agents is employed. The
ecosystem may be changing on a continual
and slow basis, as all natural systems do. A
group of similar organisms presently adap-
ted to the ecosystem is considered to be a
species. It is this species that adapts to the
changing environment on a genetic time
scale when changes are outside a cenain
optimality range for the present members of
that species. The individual members of the
species adapt to changing conditions on a
time scale determined by plasticity of the or-
ganism; this plastic period may last for the
litetime of the individual or merely during an
infant and juvenile period. The important
distinction is that the genetic time scale for
change is much longer than the individual
time scale. If changes occur too rag 1ly for
any given individual to adapt, but not so
severely as to be out of range of the avail-
able genetic pool, then a given individual
may fail, but the species as a whole will
adapt. If changes occur too rapidly over too
extreme a range, the species becomes ex-
tinct.

Reliance on a single program or set of pro-
grams will eventually prove fatal (even if
completely error free), whereas a (possibly

large) set of (possibly virtual} programs can
form a genetic pco!, allowing mutations and
crossover to bring about the evolution of a
successtul program. This, then, is the thrust
of this work: to set up conditions in which an
intelligent system may create itself through
evolution.

Role of the Environment

The approved software-engineering proce-
dure for writing a program is to start with a
set of specifications that describe the de-
sired results. Another way of viewing this
process is 10 suppose we are constructing a
function (the algorithm) that maps from a
subset of internal machine states, indicated
by the statements of the program, onto a
subset of the possible actions that a
machine can effect in the external world.
The subset of this range of actions is
precisely those results specified in the top-
level design stages (if all has gone cor-
rectly). The programmer's job is to select
the most appropriate subset in the domain of
the mapping (the set of all possible machine
states or statements in the programming
language) that best map onto the range.

The method proposed here turns this pro-
cess around and dynamically closes the
loop between high-leve! specifications and
program statements. It is this closure that is
usually neglected once the initial design
specifications have been made. This ne-
glect is ultimately responsible for the brittle
software systems that we are so reluctant to
allow to control complex machinery. Even a
conscientious effort to close this loop will not
solve 1he problem for those systems re-
quired to function in open environments—
the locp needs continuous and dynamic
closure even as the environment changes.

If the domain of the function (algorithm, pro-
gram) is widened to a much larger virtual
space of possible mappings, the task then
becomes one of evaluating the behavior of a
given program instance in its range. Eval-
uation is generally a much simpler algorithm




and may be thought of as the inverse map-
ping from the range of possible actions onto
the domain of virtual programs. Of course, a
sufficiently generalized representative ot the
virtual program space must be created
initially for this method to work. How this
might be accomplished is discussed below.

The environment is an essential part of the
ecosystem we wish to control. A specific
ecosystem may consist of sensors, data-
bases, computing engines, available soft-
ware libraries, space platforms, oifensive
and defensive weaponry, the immune sys-
tem and invading organisms. The group of
functional organisms in an ecosystem act
upon and react to the environment; they are
in fact inseparable from the ecosystem,
wnich is a nonlinear dynamic system of in-
teracting parts.

The programmer/designer becomes a policy
maker by providing the system with a
"fitness" function that evaluates success in
the environment and thus closes a loop that
is normally recognized only at the system
specification level in current software engi-
neering practice. All interaction between the
designer and the system is through this
high-level policy algorithm, which monitors
overall behavior, guiding the system to a
region of local optimal functionality. Set too
tight a specification, and the ensuing system
loses adaptability that may be essential at
some future time (e.g., when an unexpected
terrain is encountered by an exploratory
vehicle). Too locose a specification, and the
ensuing system will behave other than
desired, and may fail by default. The key
point is that the ciosure between function
and specification in a self-designing system
i$ a continuous process.

The question of reliability assurances in the

torm of proofs of correctness will surely arise

in the course of presenting this new (but
very old) paradigm. For intelligent systems,
such proofs are not only impossible, they
are not even applicable: can a proof of cor-
rectness be found for the President of the

United States? How, then, can we prove
that a given intelligent being is going tc
perform correctly? The answer is that the
question is ill-conceived; it is a question
borrowed from one domain and forced onto
another. The correct question is: Can we
reasonably assume that the job will be done
correctly by a certain individual? The only
conceivable answer is one involving esti-
mates and limits based on the experience of
the evaluator and the candidate. The main
point is that when relying on provably cor-
rect algorithms for complex, real-world situ-
ations, failure is inevitable because, sooner
or later, the environment will change in an
unexpected manner. With an adaptive,
intelligent system, a provably correct answer
may never become available in spite of our
best computer science departments. On the
other hand, total failure is not inevitable—
the adaptive, intelligent system will quite
probably muddie through to victory one way
or another. Thus there is a kind of comple-
mentarity here—a too-restrictive policy
measure that guarantees the existence of a
correctness proof will result in brittle pro-
grams, while a more liberal policy will deny
a such a proot but allow intelligent and
adaptive programs to evolve.

An Optimized Retina

If we consider a retina to be a filter for com-
plex spatial paiterns that extracts certain
types of information (whether in the visible
spectrum or not is immaterial), then a gen-
eralized retina is 4 necessary part of any
entity required to function in an environment
that possess objects crucial to the entity's
success. Pattern recognition is only one of
the functions such a device must possess.
Thus we look to the role of a retina as
fundamental to machine perception.

Again, looking to natural systems for guid-
ance, a retina may be specifically optimized
to recognize certain features. Frog retinas
responding strongly to nearby moving in-
sects, migrating birds orienting their routes
via constellations, and babies responding to



abstract human faces all come to mind as
genetically designed recognition systems.
HubelS has shown that the human retina is
also well designed for sensitivity to edges,
orientation, and motion in the field of view.
But such generality may not be necessary in
certain applications such as identification of
specific objects in a restricted environment.

A retina was constructed from a neural net-
work based on early work in pattern recog-
nition by Bledsoe and Browning® and a later
elaboration by Uhr.” The standard n-tuple
algorithm6.7 was recast as a feed-forward
neural network consisting of randomly con-
nected feature detecturs. Each feature de-
tector has n inputs from n different retina
cells (the simulated photoreceptors). In
Figure 1, n is chosen to be 3, so there are
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23, or eight, outputs of the feature detector,
each of which may correspond to a feature
of one or more categories that are learned
by the network during a training phase.
Both learning and recall involve direct
access from input cells to feature detectors
to the summing category nodes—no expen-
sive relaxation process to minimum energy
states8 is necessary, nor is backpropaga-
tion? cf errors during the learning process
required—there are no graded errors in a
Boolean system. Due to the statistical na-
ture of the connectivity and the requirement
that reasonable samples of each category
be presented during training, the network is
both fast and reasonably immune to noise—
two desirable features for real-time, real-
world applications.

Category
Nodes

Figure 1. The feature-detector retina model is a feed-forward network activating category nodes.
Activity in the retina cells is grouped into features by the m teature detectors, where m = N/n, Nis
the number of retina cells, and n is the order of the n-tuple. Each teature detector has a maximum

ot 2N output lines connected to category nodes during training. These lines activate category
nodes during recognition. Category nodes are added to the network as needed.




Both the connectivity of the network and the
contents of the memory may be taken as
genetic specifications. In an experiment de-
scribed below, only the memory cells are
subject to mutation. An alternate approach
involves an evolution of feature detectors for
panticular sets of patterns by mutation of the
connectivity between the input cells and the
feature-detector nodes. In this way, invari-
ants of the set of patterns will be encoded
into the connectivity of the network. The
adaptability of this type of network takes
place on the evolutionary time scale—much
longer than the plasticity time constants of
the adaptive brain to be considered next.

An Adaptive Brain

While we can conceive of a brain without its
emergent property of intelligence (indeed,
examples abound), the converse of intelli-
gence without a central nervous system
(CNS) is much more difficult to imagine.
The CNS used in the present work follows
closely a model originally developed by
Browning'0 for the Sandia Corporation.
Browning chose a system modeling those
biological neural networks that make use of
frequency encoding of information trans-
mitted by nerve impulses.'1 It is unclear
whether frequency-coded information flow in
the brain is fundamental to brain operation
or whether it is merely a convenient solution
to the problem of communication in a noisy
environment between low-reliability compo-
nents. However, recent work indicates that
information is coded in the actual axon
pulses and is indeed an important means of
information processing, at least in certain
areas of the brain.12 Approximate coinci-
dence of information packets traversing the
network is a stringent requirement imposed
by a frequency-coded network and may
underlie the discrimination capabilities of
the CNS. The degree of abstraction allow-
able in a simulated CNS is an open ques-
tion—can we talk about frequency as a
function of time as done by many research-
ers'3 or must the actual axonal spikes be
simulated individually? The present work

does not make the simplifying assumption of
an average, differentiable frequency func-
tion, v(t), for the neuron's output; instead, it
simulates each axonal spike separately.

The model, as implemented, consists of a
few hundred frequency-responsive neurons
or nodes. Each node has an arbitrarily cho-
sen number of inputs from other neurons
and, on the average, a like number of out-
puts simulating the distribution of axonal
spikes. The average connectivity is pre-
dominantly from a row of input nodes
through several rows of internodes, which
are not necessarily "hidden,"14 to a row of
output nodes. There is a high probability of
connections in the forward direction (input to
output) and A low probability in the lateral
and reverse directions. The distribution
function is a Rayleigh function modified by
an elliptical angular distribution with the
major axis aligned along the forward-back-
ward direction.

"Synapses” are formed at the junction of the
input of one node to the output ot another
and are modeled by a pointer associated
with an input node that refers to a memory
location associated with an output node.
The synaptic efficacy of transmitting an ax-
onal spike through a junction is analogous
to the "weight" found in many artificial neural
network models.'4 This weight is mod-
ifiable, and the modification algorit:im may
be altered to investigate various theories of
learring and memory. To date, a simple
Hebbian algorithm has been used, as well
as a frequency-based version of the BCM
synaptic modification.'S Other learning the-
ories under investigation are the drive-rein-
forcement model,16 and the dual-synaptic
population model.'? Detailed comparisons
of these various models of learning are not
available at this time, although each of the
algorithms produces reasonably satisfactory
results in that the system of neurons and
synapses undergoes self-organization re-
lated to the environment imposed.

A
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Figure 2. A synthetic organism is constructed from an adaptive, frequency-coded neural network
having sensors and effectors for interacting with the environment. The organism is presented
here as an insect, but the paradigm is not limited to a particular class of phenotypes.

A means of interacting with the environment
was added in the form of simulated sensors
(vision, taste, and touch) and effectors
(greups of muscle cells). The resulting syn-
thetic organism is shown in Figure 2. De-
pending on the sensors and effectors given
such an organism and the environment in
which it is required to function, the designer
may demand anything from an antificial rat
for classroom experiments in animal psy-
chology to an autonomous vehicle required
to explore the Martian surface. The biolog-
ical basis of synthetic intelligence is versa-
tile enough to produce a wide variety of

successful “species.” These extensions and
variations are the goal of future research
into electronic (and eventually, electro-
mechanical) life forms.

Evolution and Self-Design

In a situation of sufficient complexity (as dis-
cussed above) where proofs of correctness
are unattainable, the construction of infalli-
ble systems is impossible without an omni-
scient programmer. Darwin!8 has given us
a model for the creation of optimal systems
in artificial universes (independent of its




correctness in the real universe). The omni-
scient programmer, even if possible, is no
longer needed for the creation cf complex
hardware and software systems when the
principles of evolution are employed—a
fallible program can imprcve its own be-
havior. Thus, we are on the verge of estab-
lishing the necessary conditions whereby
electronic life can arise and evolve in the
computer, and optimize its behavior in envi-
ronments of our choosing guided by a policy
of our choice. This is an extremely powertul
paradigm for the design of systems to
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handle complex, biological-like problems,
and it wiil lead to a revolution in the science
of complex systems. Over the years, a few
individuals have become interested in these
ideas. One of the early investigators was W.
W. Bledsoe'®, who examined some of the
possibilities and problems associated with
genetic models in computer science.
Fedanzo20 gave a more recent admonition
to follow Darwinian precepts in nrablems
concerning data base optimizat on
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Figure 3. A classical n-tupie pattern matcher is shown for n = 2 and a 3 X 3 input array. A typical
pattern is shown in the array on the left. The table in the middie shows a possible arrangement of
the five possible (mostly) exclusive, randomly chosen pairs of retina cells, and the formation of
subaddresses is indicated. The table on the right shows the memory matrix necessary to store
two categories, one per column. The pair labeled 0 consists of the ordered retina cell pair 1,3.
Cell 1 has a pixel tumed on, cell 3 does not; the corresponding subaddress is therefore 10
(binary) or 2. Thus the memory matrix has an entry (if trained) at address 0, subaddress 2 in the
right column, corresponding to the right-facing L-pattern.

The usual approach to adaptive systems
can be made into a Darwinian approach to
self-designing systems by carefully sepa-
rating design and performance specifica-
tions from adaptive structures (synaptic
weights, polynomial coefficients, etc.) be-
longing to the individual organism or, in this
case, the executing computer program. One
of the most noticeable differences between
an adaptive genome and an adaptive
system concerns time scales: adaptation in
the usual sense occurs on a short time scale
and within a certain program that is self-
organizing in response to the environment
or problem. In the case of genome evolu-

tion, the time scale is much longer, extend-
ing over many individual organisms (pro-
grams) interacting with their environment
and resulting in the self-organization of the
genome itself.21

Positive and Negative Selection

There are a wide variety of selection strate-
gies to choose from when considering opti-
mization based on Darwinian principles.
The main idea is to introduce variations and
demand that reproductive success depend
on fitness (in Darwinian theory, the two con-
cepts are synonymous). Here, we consider




the effects of the two general stragegies of
nositive and negative selection on fitness.
Both of these strategies are amenable to
simulation in a relatively simple system. The
principles discussed below are well known
to evolutiorary biologists (e.g., Mayré2 and
Kimura23), and to some animal breeders,
but seem relatively unknown to computer
scientists.

Browning24 suggested a simple experiment
done with a data-structure version of the
pattern-recognition system described above.
The pattern memory is a set of binary cells
addressed by patterns in the retina (see
Figure 3). Mutations are made by logically

complementing cell contents. The algorithm
followed involves a mutation in & single, ar-
bitrarily chosen memory cell and measuring
of the success of the retina in recognizing
the set of L's, both normal and reflected in
the vertical. Inspection of the figure shows
that there are 9 such L's possible in each
orientation on a 3 X 3 grid (we are not con-
sidering reflections about the horizontal).
The scores of each of the 18 L's are com-
puted by counting 1 for each cell addressed
by a particular L pattern (the L shown in
Figure 3 would score 0 for the "Left" cate-
gory and 2 for the "Right" category for a total
score of 2). The score then becomes the
"fitness"” of that particular mutation.
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Figure 4. Results of a simple artificial genetic experiment on the memory matrix shown in Figure 2.
in the 20 memory cells, 600 mutations were made for each selection strategy (see text). The
strategy corresponding to negative selection ciearly outperforms the positive selection case.

The experiment was run for two different
selaection strategies, positive and negative.
"Positive” is defined as: Accept a mutation if
it produced a higher score, otherwise reject
t. "Negative" is defined as: Reject a muta-
tion only if it produced a lower score. Thus
we are selecting against failure, not for suc-
cess. As Figure 4 shows, the difference is
dramatic. Po.itive selection starts with a
faster slope initially, but saturates quite early
(below about 250 mutations for this 20-cell
system). Negative selection, however,
quickly overtakes the positive, and is still
showing improvement at the 600-mutation
point.

Sex and Genetic Algorithms

Employing negative selection results in im-
provements in the optimization algorithm
chosen. Additional acceleration of the evo-
lutionary process is possible in a sexual
species where there is an opportunity for in-
dividuals to pool complementary portions of
genetic material as shown by Ulam and
Schrandt.25 Application of the genetic al-
gorithms as pioneered by Holland,26 es-
pecially the use of cross-over methods,27
has been shown to result in accelerated
optimization for these classifier systems.
There is every reason to suppose that



variants of these methods, involving a
careful separation between the "phenotype”
and the "genotype,” woulc dramatically ac-
celerate the process if applied to a coilection
of individuals forming a gene pool.

Resuits & Future Directions

One aspect of intelligent behavior is the
abiiity to solve a problem in a surprising
fashion. The system described above has
generated such a surprising solution to a
presumabl,; simple problem. The problem
posed to the system was to optimize the be-
havior of the synthetic organism by avoiding
the boundaries of the environment yet
keeping in moticn to explore and interact
with that environment. A simple fitness
function set the policy by evaluating each
time step of the synchronous system. The
system was left to evolve on its own. The
expectation was that the various parameters
determining the tactile sensitivity would de-
velop to the point where touching the
boundary would initiate a sequence of net-
work node firings effectively demanding re-
treat of the organism from the walls. Since
the high frequency felt at the boundaries
naturally proves disruptive to a frequericy-
coded network, as shown by previously.28 it
was natural to assume that this inherent ca-
pability would be optimized. The surprise
was that this did not happen. Instead, the
synthetic creature evolved—after more than
four hundred generations—into a new
species whose locomotion was predomi-
nantly backward. The new organisms
walked backward in a very efficient manner,
occasionally turning around to sense ob-
jects in the environment. Thers was no
touch sensor on the rear, so posterior colli-
sions with the walls had no effect on the fit-
ness function and could not disrupt the ac-
tivity of the network.

Thus, a group ot parameters, or a "gene"” of
the system, altered to solve the problem in
an efficient, surprising, and biologically rea-
sonable manner. indeed, one of the in-

duced mutations discovered in C. Elegans
(a microscopic, 850-celled worm having ap-
proximately 300 neurons) causes this very
behavior.2% Severai unc (for uncoordi-
nated) mutations affect the ability of the
worm to move forward and backward. In
particular, unc-4 prohibits backward motion
entirely, while the unc-7 mutation causes
predominantly backward motion.30

As an exercise in understanding a complex
system, a preliminary analysis was made of
the parameter file (defining the structure and
behavior of the simulated organism) before
and after the evolutionary episode. The new
species developed soi.awhere piior t0 456
generations involving 1537 mutated individ-
uals. It was assumad that a parameter
residing in a gioup responsible for the
dynamics of the muscle motion would be
identifiable as responsible for the reverse
locomotion (indeed, there is a parameter
specifying the degree of asymmetry in the
extensor-to-fiexor contractions). This hope
was dashed when the standard deviation of
the percentage change of the parameters in
the muscle-dynamics group was found to be
not significantly different from that of any
other of the functional groups. Indeed, the
asymmetry parameter changed in the direc-
tion of increased forward impetus by about
10% rather than in the direction of reverse
locomotion. The nu.nber of random trials
necessary to alter the asymmetry parameter
sufficiently to cause predominantly back-
ward motion is approximately 1005—much
larger than the <1537 trials actually needed.
Thus, the selectionist method of optimization
is far more effective than a random method
would be.

We have jiven an examole of a system
whose beh:vior is clearly known, but whose
internal causes are not yet understood. The
situation is analogous to one's pet dog: you
ca: never ':nderstand an organism as com-
plex as a dog, but you sure can make it sit
whenever you wish (almost). Dogs have
proven their reliability in complex, difficult,




and demanding situations throughout hi
tory, yet they are neither understandable (in
the reductionist sense) nor provabiy correct.

The Future

Accass to faster processors operating in
parallel configurations will allow a number
of additional techniques, all taken from biol-
ogy, to be applied to the creation of selt-de-
signing systems. Sex, in partcular, was
mentioned above. Other means of acceler-
ating evolution involve interaction between
individuals of the same or different species.
A process of coevolution, or "arms race" as
in a mutual selection for speed in ch.:etahs
and their prey, gazelles, is one example.
Here, selection pressures force one, then
the other species to excel marginally. The
result is either the extinction of both or two
very fast animals. Similarly, direct competi-
tion for a particular resource, such as the
food objects in the simulation described in
this paper, would certainly accelerate the
optimization process.

All of these methods require very fast hard-
ware and sophisticated simulation lan-
guages (for specifying ecosystems as well
as neural networks). An ideal would be to
let synthetic organisms interact and compete
simultaneously on a set of parallel proces-
sors. Policy for coevolution between a de-
fensive system and an offensive system
would pe set for victory of one "species”
rather than mutual survival as in the cheetah
case. Thus, an immune-system molecule
could be synthetically evolved to specifically
label a particular virus fragment (both in sil-
ico and in vitro).

It is anticipated that the most valuable result
of this work will be a system that, upon
sensing failure, will enter a mode of accel-
erated evolution, producing success by re-
playing and adapting to events that lead to
the failure. This would be the ultimate
adaptive system. Obvious applications are
in a strategic defense system, a survey robot
for nuclear power plants, and a method of
responding with specific vaccines to the

high rate of mutation of the AIDS virus. For
NASA, there are likewise obvious applica-
tions: a planetary exploration vehicle will
probably meet with failure due to unantici-
pated environmental effects. Any means of
turning such an eventual failure into success
should be welcome.
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